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Fracture Mechanics Applied to

Elastomeric Composites

A. N. Gent
Institute of Polymer Science
The University of Akron

Akron, Ohio 44325

Abstract

Griffith introduced a general fracture criterion in 1920: a crack
will grow only when enough enerqy is available in the system to cause
further fracture. This simple concept has been appliied to various tear
processes in elastomeric materials by Rivlin and Thomas and to a variety
of adhesive failures by Kendall. Their results are reviewed, with
particular reference to the fracture and debonding of elastomeric com-
posites. Two further cases are then considered: the detachment of an
elastic matrix from a rigid spherical inclusion and the pull-out of

inextensible cords from an elastic block in which they are embedded.

Introduction

In general, the strength of an adhesively-bonded joint is a
function of the mode of loading and the dimensions and elastic properties
of the bonded components, as well as of the intrinsic strength of the
interface. The objective of fracture mechanics is to relate the breaking
load to these diverse factors. One method of analvsis uses a simple energy
criterion for fracture, in terms of a characteristic energy for breaking

apart the interface. Originally proposed by Griffith (1) for the brittle

fracture of elastic solids, an energy criterion for fracture has been success-




fully applied to materials which become locally dissipative by Irwin (2) and
Orowan (3), to highly-elastic materials by Rivlin and Thomas (4), and to

the separation of two adhering solids by a number of authors (for example
(5-17) ).

An alternative method consists of evaluating the stresses set up at the

site of fracture, and then invoking a characteristic fracture stress as the
criterion for rupture (18). These two methods are fundamentally equivalent,
but energy calculations are often easier to perform. The energy method is
used here exclusively, for this reason.

In applying an energy criterion to adhesive failure, it is first
necessary to identify an initial zone of separation, usually a flaw or
region of high stress concentration at the interface between the two adher-
ing solids. Then, failure is assumed to take place by growth of this initial
debond until the joint is completely broken. An energy balance is formu-
Tated for a small growth of the debond--changes in the strain energy of the

joint and the potential energy of the loading device are equated to the

characteristic energy needed for debonding. This energy balance provides
the required relation between the breaking load, the properties of the two
adhering solids and the dimensions of the joint.
The fracture strength of a number of simple adhesive joints is now
discussed, using these concepts of fracture mechanics. In all cases it is —

assumed, for simplicity, that one of the adherends is linearly elastic and "ii!"'
0
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energy is supplied by a loading device and stored in the deformable material.
It is expended at failure in two ways: in supplying the work of fracture

or detachment and in deforming material which was previously undeformed. By
jdentifying the energy available to that required to propagate a fracture or
detached zone, the magnitude of the stored strain energy at the moment of
fracture is deduced, and hence the applied stress p at break.

Relations obtained in this way for the failure load contain no adjust-
able parameters. Successful prediction of failure loads is therefore strong
evidence for the validity of the proposed failure criterion and of the sim-
plifying assumptions made in the analysis, viz., linearly elastic behavior
of the adherends and substantially homogeneous deformation of parts of
each adherend. Moreover, the predicted failure loads may be used as the
basis for rational design of bonded components, once the basic assumptions
of the theory have been shown to hold. Also, simple test methods can be
developed for determining the characteristic strength of bonded interfaces
from the measured failure loads of suitable model joints. The analysis of
the pull-out force of cords embedded in rubber blocks (16) has been employed

in this way to measure the adhesion of tire cords to rubber (19).

Modes of Failure

Peeling separation.

The peel test is particularly simpie to analyze because the elastic
energy of deformation of the adherends changes very little as peeling pro-

ceeds. This is because most adhering layers are sufficiently stiff that they




donot stretch significantly under the force of peeling, and the amount of
material subjected to bending does not alter. Thus, for flexible but in-
extensible adherends the work of detachment is provided directly by the
loading device. Hence, for peeling at 90° (Figure 1a) the peel force P
per unit width is given by

P = Ga (1)

where G, denotes the work of detachment per unit area of interface. For
peeling at 1800 (Figure 1b)

P=Gy/2 (2)
The factor of 2 arises in this case because the point of loading moves

through twice the displacement of the detachment front.

Lap shear
When a deformable adhering layer is subjected to a force abplied parallel

to the interface, Fiqure 2, then the laver becomes stretched after detach-
ment. For an increase Ac in the length of the detached portion, the
detached layer becomes stretched by an amount eAc where e is the tensile
strain in the already-detached Tayer. If the layer is assumed to be
Tinearly-elastic, with a tensile (Young's) modulus E, then é=P/Et, where
P is the applied tensile force per unit width of the layer and t is the
layer thickness. The loading device thus supplies energy given by

PweAgijzwAc/Et), Some of this energy, PzwAc/ZEt, is expended in stretchinyg the

newly-detached length Ac to the tensile strain e. The remainder, PZwAchEt, is
expended in the detachment process itself and is thus equal to the work re-

quired for detachment, Gawac(12).

2

-




Hence,
P2 =2 tEG, (3)

or, since cb = P/t,

oy’ = 266/t (4)
The above relation resembles Griffith's solution (1) for the tensile
breaking stress of a bar contatning a small circular cavity of radius r,
°b2 = 7mEG /3r (5)
where Gc denotes the work required to propagate a fracture p]ane.v However,
in Griffith's solution, as the
flaw grows and its radius increases, the stress required for fracture is
predicted to decrease. Thus, 1if the applied stress is large enough
to cause the (small) initial flaw to grow, it will then be more than suffi-
cient to make the process continue, so that tensile fracture is catastrophic,
On the other hand, equation 4 does not contain the size of the debonded zone.
Shearing detachment is therefore predicted to take place continuously at
a constant tensile stress in the deformable layer, related inversely to its
thickness. These features of shearing detachment have been verified ex-
perimentally for adhering elastomeric layers (12 and the theory has been
extended to deal with short overlaps (when bending deformations become
important) (13, with unequal adherends (12, and with prestressed layers
(20. In all cases, the success of a simple energy criterion for detachment

confirms its general validity.




Tensile detachment from a rigid plane

For a circular debonded patch at the interface between a half-space

of an elastic material and a rigid substrate, Figure 3, the relation

corresponding to equation 5 for the applied stress Sg sufficient to cause

growth of the debond is (21
0,2 = 2nEG,/3r (6)

The same result is obtained for a pressurized debond (a "blister")of

radius r at the interface between an elastic half-space and a rigid

plane (23. If the adhering material is incompressible in bulk, as is

assumed here, then a tensile stress % applied at infinity is mechani-

cally equivalent to a pressure % applied to the inner surfaces of the

debonded region.

Detachment from a spherical inclusion

A relation analogous to equation 6 has been deduced for the applied
stress required to cause detachment of an elastic matrix from a rigid
spherical inclusion, Figure 4. The relation obtained then is (15)

op2 = 4nEG,/3r sin 20, (7)
where r now denotes the radius of the inclusion and 28 denotes the
angle subtended by an initially-debonded patch located in
the most favorable position for growth, i.e., in the direction of the
applied tensile stress, Figure 4. ﬁ

It is clear thaqu will be extremely large for inclusions of small

radius r, even if the level of adhesion, represented by G,, is relatively

——




small, only of the order of magnitude of Van der Waal's attractions.

For example, when E is assumed to be 2 MPa, representative of soft
elastomers, and Ga is given the relatively low value of 10 J/mz, then
the critical app;;;d stress for detachment is predicted to reach a
magnitude similar to E when the radius of the inclusion is about 20 um,
even if the initially-debonded zone is as large as is feasible, 8 = 45°,
Now, a triaxial ‘tension or negative hydrostatic pressure of magnitude
20 is set up in the immediate vicinity of a rigid spherical inclusion,
at the two poles in the direction of applied tensile stress g. Any
small voids present within the adhesive in these regions will grow in
a catastrophic way by rupture of the adhesive when the material around
them is subjected to a triaxial tension exceeding a critical level,
given approximately by E + (2 S/a) where S is the surface energy of the
adhesive and a is the initial radius of the void {3). The condition

for catastrophic growth of pre-existing voids is, therefore:
o = iE + (S/a). (8)

Thus, instead of detaching from the inclusion the adhesive itself
will fail by cavitation when the inclusion is small in size because the
critical stress for growth of cavities, given by equation 8, will be
reached before the critical stress for debonding, given by equation 7.

The smallest inclusion for which detachment will take place is given

by
r = 16nG,/3E

on putting 8 = 45° in equation 7 and S = 0 in equation 8.




The second term in equation 8 cannot be ignored, however, when
the inclusion is extremely small, because voids located within the immediate
vicinity of an inclusion must be small in size in comparison with the
inclusion itself. Thus, when the inclusion radius r is reduced, the
radius a of a suitably Tocated void is necessarily smaller, and growth
of it by tearing will require an increasingly-large applied stress. When
reasonable values are assigned to E and S, it may be concluded that
growth of local voids by tearing will become increasingly difficult as
the particle diameter is reduced below about 50 um and when it is less
than about 1 um then tearing failures in the vicinity become virtually
impossible also. The matrix will then be effectively bonded to the
inclusion under all circumstances. These considerations appear to account
for the general features of reinforcement of elastomers by particulate
fillers (15).

Pull-out of inextensible fibers

By applying the same principle of energy conservation during detach-
ment, it can be shown that the pull-out force P for an inextensible
fiber of radius r embedded in a cylindrical elastic block of radius R

is given by (16):

p2 - 4w2R2rEGa. (9)

A sketch of this experimental arrangement is given in Figure 5a. When
a bonded elastic cylinder of radius.g is pulled out from a cylindrical
cavity of the same radfus, Figure 5b, then the pull-out force is also

given by equation 9 in the special form (17):

P2 = 4nlriE g, (10)
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Experimental results with rubber cylinders have confirmed the general
validity of equations 9 and 10, and measurements of failure loads in
compression and torsion have also been successfully analyzed in the
same way ( 17 ). Thus, again, energy considerations account for the
principal features of the strength of simple joints.

It is noteworthy that equations 9 and 10 predict increasing pull-
out forces as the radius of the inclusion (fiber) is increased. This
trend is in striking contrast to the result for a single spherical
inclusion, equations 7 and 8, where the detachment stress is predicted
to decrease as the radius of the inclusion is increased. Both trends
are direct consequences of the theoretical analysis, and both are con-
firmed by experiment (16,24). The surface area to be debonded and the
energy required to do so are both greater for fibers of larger diameter
and, as a result, the pull-out force is increased. For spherical
inclusions, on the other hand, the amount of highly-stressed material
in the vicinity of the debond, which provides the energy needed for
propagating the debond in this case, also increases as the size of the
inclusion is increased. Indeed, the highly-stressed volume grows in
proportion to gi whereas the area to be debonded only grows in proportion
to 53. In consequence, it is easier to propagate a debond on a larger
inclusion than it is on a smaller one.

ATl highly—elastic materials tend to contract on stretching. When
an embedded fiber is pulled out, the surrounding material contracts
on to it when the pull-out force is applied, and it becomes gripped by

friction as well as by adhesion. When the work of frictional sliding
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is added to the work of debonding the pull-out force is obtained as (17).
P2 = 4nZR%reG, /(1-4rux/ 3R] (11)

in place of equation 9, where u denotes the coefficient of friction and x

denotes the length of fiber embedded in the block of elastomer. In both

equation 9 and 11, it has been assumed that the radius R of the elastic

block is much larger than the radius r of the fiber.

It is clear from equation 11 that the pull-out force P will rise
to extremely high values when the fiber is embedded deeply enough sc that
the second term in the denominator approaches unity. Although the
theoretical treatment leading to equation 11 is rather approximate, it
accounts for the general nature of the experimental observations and,
in particular, for the greater infiuence of friction for fibers or embedded
cylinders of larger diameter (17).

When a number n of fibers are embedded in a single block of elastomer
and they are all pulled out together, then the work required for detach-
ment is obviously larger than for a single fiber by a factor of n. The
strain energy stored within the block must therefore be larger than before,
by a factor of n, and the total force applied for pull-out must be increased
by a factor of gi. Thus, energy considerations lead immediately to the
surprising conclusion that the total force required to pull out n fibers
simultaneously from a single elastic block will increase in proportion

to n.

This prediction has been verified experimentally for 1-10 cords
embedded in a rubber block, Figure 6 (16 ). It provides a striking
example of the success of simple energy calculations in accounting for

important features of the strength of joints and structures.

[P
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Figure 6.

Total Pull-out Force for n fibers Embedded in a
Single Rubber Block, Plotted Against gi (16)
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